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CH-8: Finite Element Method [FEM] 

Introduction to Finite Element Methods (FEM): 

The Finite Element Method (FEM) is a powerful computational technique used to solve 
complex problems in engineering and physics, particularly those involving structures, fluids, heat 
transfer, and electromagnetism. It is widely applied in various fields such as mechanical 
engineering, civil engineering, aerospace engineering, and biomedical engineering. 

FEM allows for the approximation of solutions to partial differential equations (PDEs) by 
breaking down complex problems into simpler, smaller components. 

FEM is a method for solving partial differential equations (PDEs) that arise from physical 
phenomena, such as heat conduction, fluid flow, and structural deformation. It involves breaking 
down a large, complex system into smaller, simpler parts called "finite elements." These 
elements are connected at points called "nodes." By approximating the solution within each 
element and assembling the solutions for all elements, FEM can provide an approximate solution 
to the original problem. 

Methods employed in FEM- Steps in FEM   

1. Problem Definition 

FEM is typically used to solve boundary value problems, which involve finding the unknown 
behavior (e.g., displacement, temperature, or stress) of system under given conditions, subject to 
certain constraints. These problems can be described by: 

 Partial Differential Equations (PDEs): These govern the behavior of physical systems, 
such as heat conduction, fluid flow, or structural deformations. 

 Boundary Conditions: Conditions that specify the behavior of the system at its 
boundaries, like fixed supports or specified temperatures. 

 Initial Conditions (if time-dependent): Describes the initial state of the system at the 
start of the analysis. 

2. Discretization of the Domain 

In FEM, the first step is to discretize the physical domain (the structure or material of interest). 
The domain is divided into small, simple shapes called finite elements, which can be triangles, 
quadrilaterals, tetrahedra, or hexahedra depending on the problem's dimensionality and 
geometry. These elements are connected at points known as nodes. 

 Element: A small, simple subdomain that can be solved independently. 
 Node: The points that define the corners of each element and where the solution (e.g., 

displacement, temperature) is computed. 
 Mesh: The entire collection of elements and nodes that form the discretized domain. 



3. Formulation of the Problem 

Each element is modeled mathematically using a set of shape functions that interpolate the 
solution within the element. The solution is usually approximated by expressing the unknown 
variable (e.g., displacement or temperature) as a linear combination of shape functions. 

 Shape Functions: These define how the solution behaves within each element. 
 Element Stiffness Matrix: For structural problems, the stiffness matrix describes the 

relationship between the forces applied to the element and the displacements that result 
from those forces. 

 Global System of Equations: The system of equations for all elements is assembled into 
a large system, typically written as: 
 [K]{u}={F} 
Where, 
 [K] is the global stiffness matrix, 
{u} is the vector of unknown displacements, and 
{F} is the vector of external forces or loads applied to the system. 

4. Assembly of the Global System 

The contribution of each element's stiffness matrix and force vector is assembled into a global 
system of equations. This involves summing up the local stiffness matrices and force vectors 
from all elements, taking into account how the elements share nodes. 

5. Solution of the System 

Once the global system of equations is established, it is typically solved using numerical 
techniques such as direct solvers (e.g., Gaussian elimination) or iterative methods (e.g., 
Conjugate Gradient). The result is a set of approximate values for the unknowns at the nodes 
(e.g., displacements, temperatures, etc.). 

6. Post-Processing 

After solving for the unknowns, the results are analyzed and interpreted. This might involve: 

 Visualization: Graphical representations such as deformed shapes, stress distributions, or 
temperature gradients. 

 Validation: Comparing the results with experimental data or known analytical solutions 
to ensure accuracy. 

 Refinement: Refining the mesh (i.e., making the elements smaller) to improve accuracy 
if necessary. 

 

 



Finite Element Method (FEM) - Concept of Discontinuity 

FEM is a powerful numerical method used for solving complex engineering problems, especially 
those involving structures, fluids, and heat transfer. It divides a large problem into smaller, 
simpler parts called elements, which are connected at nodes. While FEM is highly versatile and 
effective, there are both advantages and disadvantages to using it, especially in cases involving 
discontinuities (such as cracks, holes, or sudden material property changes). 

Advantages of FEM: 

1. Versatility: FEM can be applied to a wide range of problems including static, dynamic, 
linear, and nonlinear analyses. It is used in solid mechanics, fluid dynamics, heat transfer, 
electromagnetic fields, and more. 

2. Complex Geometries: FEM can handle complex geometries and boundary conditions, 
making it suitable for irregular shapes and structures. 

3. Discretization: The domain of the problem is divided into smaller, manageable parts 
(elements), making the problem solvable. 

4. Adaptability to Discontinuities: FEM is capable of addressing problems involving 
discontinuities such as cracks, holes, and material property changes by refining the mesh 
in those regions. 

5. Local Refinement: In regions with high gradients (like discontinuities), FEM allows 
mesh refinement to capture the variations more accurately without needing to refine the 
entire model. 

6. Accurate Results: The method provides accurate solutions, especially when higher-order 
elements are used and the mesh is refined sufficiently in critical areas. 

7. Support for Nonlinear Analysis: FEM can handle nonlinear material behavior, large 
deformations, and boundary conditions, which is crucial for real-world applications. 

Disadvantages of FEM: 

1. Computational Cost: FEM simulations, especially for large models with complex 
geometries or when dealing with fine meshes, can be computationally expensive and 
time-consuming. 

2. Complexity of Setup: Setting up a FEM model requires significant expertise, particularly 
when handling complex boundary conditions, material properties, or nonlinear behavior. 

3. Mesh Dependency: The accuracy of the solution depends heavily on the mesh quality. 
Poor mesh choices can lead to inaccurate results, particularly near discontinuities. 

4. Handling Discontinuities: While FEM can handle discontinuities, it is challenging to 
represent them perfectly without introducing errors, especially in regions with sharp 
gradients or stress concentrations. 

5. Convergence Issues: Some problems, especially those with highly nonlinear or time-
dependent behavior, may face convergence difficulties if not properly set up or if the 
mesh isn't refined enough. 

6. Post-Processing Requirements: Interpretation of results requires sophisticated post-
processing tools to extract meaningful engineering insights. 



Limitations of FEM: 

1. Singularity at Discontinuities: FEM can struggle with representing sharp discontinuities 
(like cracks or material interfaces) because these singularities often require very fine 
meshes to resolve, which can be computationally prohibitive. 

2. Stress Concentrations: At points of discontinuity, stress concentrations may occur. FEM 
approximates these concentrations, but accurate representation often requires very dense 
meshes, which increases computational load. 

3. Material Property Changes: Discontinuities in material properties (such as a sudden 
change in material composition or phase) require special handling, and errors may arise if 
the material interface is not modeled properly. 

4. Fracture Mechanics: While FEM can model crack propagation, handling dynamic 
fracture (moving cracks or growing fractures) requires advanced techniques like cohesive 
zone models or extended finite element methods (XFEM), which can be complex to 
implement. 

5. Boundary Conditions: Discontinuities at boundaries (e.g., a hole in a plate) may result 
in problems with boundary condition application or numerical artifacts if the boundary is 
not carefully defined. 

Applications of FEM: 

1. Structural Analysis: FEM is widely used in structural engineering to analyze stresses, 
strains, and deformations in buildings, bridges, and mechanical components. 

2. Heat Transfer: It is used to model heat conduction, convection, and radiation, especially 
in complex systems with varying material properties and boundary conditions. 

3. Fluid Dynamics: FEM is applied to solve fluid flow problems, particularly when there 
are changes in material properties or complex geometries. 

4. Acoustic Analysis: FEM is used to study sound wave propagation, vibration, and noise 
control in various structures. 

5. Electromagnetic Fields: FEM is used in electrical engineering to analyze fields in 
devices like antennas, capacitors, and magnetic materials. 

6. Fracture Mechanics: FEM, especially with extensions like XFEM, is used to model 
crack growth and failure in materials, which is crucial in aerospace, automotive, and civil 
engineering. 

7. Biomechanics: FEM is applied to simulate human tissues, bones, and organs under 
various forces for medical and prosthetic design. 

8. Geotechnical Engineering: Used for soil-structure interaction problems, FEM is applied 
in the design of foundations, tunnels, and other geotechnical structures. 

 

 



Chapter-9 

Finite Element Analysis 

Steps in Finite Element Analysis (FEA) 

The general procedure for performing FEM involves the following steps: 

1. Preprocessing: 
o Define the problem (governing equations and boundary conditions). 
o Discretize the domain into finite elements (mesh generation). 
o Choose an appropriate element type (e.g., 1D, 2D, or 3D elements). 
o Assign material properties and load conditions. 

2. Solution: 
o Formulate the system of equations based on the weak form. 
o Assemble the global stiffness matrix. 
o Apply boundary conditions and solve the system of equations to get the unknown values 

(e.g., displacement, temperature). 
3. Postprocessing: 

o Analyze the results (e.g., visualize the displacement, stress, or temperature distribution). 
o Interpret the results and check if they meet physical expectations or validate with known 

solutions. 

The FEA process is typically broken down into several distinct phases: 

1. Pre-Processing (Model Setup) 

In this phase, the problem is prepared for the analysis, and it involves several key steps: 

 Geometry Definition: The first step is to define the geometry of the structure or system 
you are analyzing. This could be a solid, shell, or beam model depending on the 
application. 

 Material Properties: Define the material properties for each element in the model. This 
can include properties like Young's Modulus, Poisson’s ratio, density, thermal 
conductivity, etc. 

 Meshing: The geometry is divided into small, simple elements (e.g., tetrahedra, 
hexahedra, or beam elements). Meshing involves selecting the type, size, and quality of 
these elements. 

 Boundary Conditions and Loads: Define the external constraints and loads acting on 
the system. Boundary conditions could include fixed supports, symmetry constraints, or 
temperature variations, while loads might be forces, pressures, thermal gradients, etc. 

 Element Selection: Choose the appropriate type of finite elements (e.g., 1D, 2D, 3D, 
solid, shell, or beam elements) based on the nature of the problem. 

2. Solution Phase 



Once the model is set up, the next step is to solve the system of equations that represent the 
physical behavior of the structure. This phase involves: 

 Assembly: The global stiffness matrix is assembled from the individual element stiffness 
matrices. This process typically requires knowledge of the shape functions and 
interpolation methods. 

 Solving the System of Equations: The governing equations (often in the form of linear 
or nonlinear equations) are solved. For linear problems, this can be done using methods 
like Gaussian elimination or iterative solvers. For nonlinear problems, more advanced 
techniques, such as Newton-Raphson, may be required. 

 Post-Processing for Nonlinear Problems: For nonlinear problems, an iterative process 
is used, and the system is solved for each time step or increment. 

3. Post-Processing (Results Interpretation) 

In this phase, the results of the analysis are examined and interpreted: 

 Visualization: Results are often visualized using contour plots, displacement plots, and 
deformation animations to better understand the behavior of the system. 

 Stress, Strain, and Deformation Analysis: The main results are stresses, strains, 
deformations, and other derived quantities like factor of safety, heat distribution, etc. 

 Verification and Validation: Results are checked for accuracy, often by comparing them 
to analytical solutions (for simple cases) or experimental data. 

 Optimization: Based on the results, design changes might be proposed to improve 
performance, safety, or material usage. 

4. Post-Analysis Phase (Model Refinement and Reporting) 

This phase typically involves refining the model and finalizing the analysis: 

 Model Refinement: Based on the results from the initial analysis, you might refine the 
mesh, update the material properties, or apply more accurate boundary conditions. 

 Sensitivity Analysis: Perform a sensitivity analysis to understand how changes in input 
parameters (like material properties or load conditions) affect the results. 

 Documentation: Finalize the analysis by preparing reports or presentation materials that 
summarize the model setup, assumptions, results, and any recommendations or design 
improvements. 

Discretization process: 

Discretization is a fundamental process in the Finite Element Method (FEM), which involves 
dividing a continuous domain (geometry or structure) into smaller, finite parts called elements. 
These elements are interconnected at specific points called nodes. By discretizing the domain, 
the governing partial differential equations (PDEs) of the problem can be approximated using a 
system of algebraic equations. 



Steps in the Discretization Process: 

1. Geometric Domain Division: 
o The first step is to break down the continuous geometry of the problem into a 

finite number of elements (e.g., triangles, quadrilaterals in 2D or tetrahedra, 
hexahedra in 3D). 

o The shape, size, and number of elements depend on the complexity of the 
geometry and the desired accuracy. 

2. Selection of Element Types: 
o The type of elements used depends on the problem domain, e.g., line elements for 

1D problems, triangular or quadrilateral elements for 2D, and tetrahedral or 
hexahedral elements for 3D problems. 

o Higher-order elements can be used for increased accuracy. 
3. Node Placement: 

o Nodes are strategically placed at element corners, edges, or internally, depending 
on the type and order of the element. 

o Nodes serve as the points where the solution is explicitly computed. 
4. Interpolation Functions: 

o Within each element, the solution is approximated using interpolation (or shape) 
functions that depend on nodal values. 

o These functions are typically linear or polynomial, depending on the order of the 
element. 

5. Governing Equation Approximation: 
o The governing PDE is transformed into its weak or variational form, suitable for 

FEM application. 
o The domain is discretized, and the integral equations are approximated for each 

element. 
6. Assembly of Global System: 

o The local element equations (stiffness matrix, force vector, etc.) are assembled 
into a global system of equations using connectivity information. 

7. Application of Boundary Conditions: 
o Essential and natural boundary conditions are imposed on the discretized 

equations to ensure the solution satisfies physical constraints. 
8. Solving the System: 

o The resulting system of algebraic equations is solved using numerical methods to 
obtain approximate solutions at the nodes. 

Meshing-Element Type 

In Finite Element Method (FEM), meshing is the process of dividing a geometric model into 
smaller, discrete elements to solve physical problems numerically. The type of element chosen 
during meshing depends on the geometry, problem type, and required accuracy.  

Below are common element types used in FEM: 

1. 1D Elements 



 Applications: Beams, trusses, frames, and slender structures. 
 Types: 

o Bar/Truss Elements: For axial forces only (e.g., tension, compression). 
o Beam Elements: For axial, bending, and shear forces. 

 Shape: Straight or curved line segments. 

2. 2D Elements 

 Applications: Thin structures such as plates, shells, or planar problems (stress analysis in 
2D). 

 Types: 
o Triangular (3-node or higher): Easier to mesh complex geometries; may be less 

accurate than quadrilaterals for the same mesh density. 
o Quadrilateral (4-node or higher): Often preferred for better accuracy and 

efficiency in structured domains. 
 Shape: Flat elements with triangular or quadrilateral geometry. 

3. 3D Elements 

 Applications: Solid mechanics, thermal problems, and 3D structures. 
 Types: 

o Tetrahedral (4-node or higher): Useful for complex geometries; easier to 
automate meshing. 

o Hexahedral (8-node or higher): Better accuracy for structured domains but 
harder to mesh. 

o Pyramidal and Wedge Elements: Used for transitions between tetrahedral and 
hexahedral elements. 

 Shape: Solid shapes such as tetrahedrons, hexahedrons, or wedges. 

4. Shell Elements 

 Applications: Thin-walled structures like aircraft fuselages, car bodies, or pipelines. 
 Types: 

o Linear Shells: Simplified formulations, good for simple thin structures. 
o Nonlinear Shells: For large deformations and complex loading. 



 

CHAPTER-10 

STIFNESS MATRIX 

STIFFNESS MATRIX OF A BAR ELEMENT 

The primary characteristics of a finite element are embodied in the element stiffness matrix. For 
a structural finite element, the stiffness matrix contains the geometric and material behavior 
information that indicates the resistance of the element to deformation when subjected to 
loading. Such deformation may include axial, bending, shear, and torsional effects. For finite 
elements used in nonstructural analyses, such as fluid flow and heat transfer, the term stiffness 
matrix is also used, since the matrix represents the resistance of the element to change when 
subjected to external influences. 

Linear spring as a finite element  

A linear elastic spring is a mechanical device capable of supporting axial loading only, and the 
elongation or contraction of the spring is directly proportional to the applied axial load. The 
constant of proportionality between deformation and load is referred to as the spring constant, 
spring rate, or spring stiffness k, and has units of force per unit length. As an elastic spring 
supports axial loading only, we select an element coordinate system (also known as a local 
coordinate system) as an x axis oriented along the length of the spring, as shown. 

 

Assuming that both the nodal displacements are zero when the spring is undeformed, the net 
spring deformation is given by δ= u2 – u1  

and the resultant axial force in the spring is  

f = kδ= k(u2 – u1)  

For equilibrium,  



f1 + f2= 0 or f1 = − f2,  

Then, in terms of the applied nodal forces as  

f1 = − k(u2 – u1) 

f2 = k(u2 – u1) 

which can be expressed in matrix form as 

 

is defined as the element stiffness matrix in the element coordinate system (or local system), {u} 
is the column matrix (vector) of nodal displacements, and { f } is the column matrix (vector) of 
element nodal forces. 

 

The equation shows that the element stiffness matrix for the linear spring element is a 2 × 2 
matrix. This corresponds to the fact that the element exhibits two nodal displacements (or 
degrees of freedom) and that the two displacements are not independent (that is, the body 
is continuous and elastic). 

Furthermore, the matrix is symmetric. This is a consequence of the symmetry of the forces 
(equal and opposite to ensure equilibrium). 

Also the matrix is singular and therefore not invertible. That is because the problem as defined 
is incomplete and does not have a solution: boundary conditions are required. 

 

 

 



SYSTEM OF TWO SPRINGS [GLOBAL STIFFNESS MATRIX] 

 

Writing the equations for each spring in matrix form: 

 

To begin assembling the equilibrium equations describing the behavior of the system of two 
springs, the displacement compatibility conditions, which relate element displacements to 
system displacements, are written as: 



 

 



 

PROPERTIES OF STIFFNESS MATRIX  

Note that the system stiffness matrix is:  

(1) symmetric, as is the case with all linear systems referred to orthogonal coordinate systems; 
(2) singular, since no constraints are applied to prevent rigid body motion of the system;  

(3) the system matrix is simply a superposition of the individual element stiffness matrices 
with proper assignment of element nodal displacements and associated stiffness coefficients to 
system nodal displacements. 












































